1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Basic functions for dealing with memory
//!
//! This module contains functions for querying the size and alignment of
//! types, initializing and manipulating memory.

#![stable(feature = "rust1", since = "1.0.0")]

use marker::Sized;
use intrinsics;
use ptr;

#[stable(feature = "rust1", since = "1.0.0")]
pub use intrinsics::transmute;

/// Leaks a value into the void, consuming ownership and never running its
/// destructor.
///
/// This function will take ownership of its argument, but is distinct from the
/// `mem::drop` function in that it **does not run the destructor**, leaking the
/// value and any resources that it owns.
///
/// There's only a few reasons to use this function. They mainly come
/// up in unsafe code or FFI code.
///
/// * You have an uninitialized value, perhaps for performance reasons, and
///   need to prevent the destructor from running on it.
/// * You have two copies of a value (like when writing something like
///   [`mem::swap`][swap]), but need the destructor to only run once to
///   prevent a double `free`.
/// * Transferring resources across [FFI][ffi] boundries.
///
/// [swap]: fn.swap.html
/// [ffi]: ../../book/ffi.html
///
/// # Safety
///
/// This function is not marked as `unsafe` as Rust does not guarantee that the
/// `Drop` implementation for a value will always run. Note, however, that
/// leaking resources such as memory or I/O objects is likely not desired, so
/// this function is only recommended for specialized use cases.
///
/// The safety of this function implies that when writing `unsafe` code
/// yourself care must be taken when leveraging a destructor that is required to
/// run to preserve memory safety. There are known situations where the
/// destructor may not run (such as if ownership of the object with the
/// destructor is returned) which must be taken into account.
///
/// # Other forms of Leakage
///
/// It's important to point out that this function is not the only method by
/// which a value can be leaked in safe Rust code. Other known sources of
/// leakage are:
///
/// * `Rc` and `Arc` cycles
/// * `mpsc::{Sender, Receiver}` cycles (they use `Arc` internally)
/// * Panicking destructors are likely to leak local resources
///
/// # Example
///
/// Leak some heap memory by never deallocating it:
///
/// ```rust
/// use std::mem;
///
/// let heap_memory = Box::new(3);
/// mem::forget(heap_memory);
/// ```
///
/// Leak an I/O object, never closing the file:
///
/// ```rust,no_run
/// use std::mem;
/// use std::fs::File;
///
/// let file = File::open("foo.txt").unwrap();
/// mem::forget(file);
/// ```
///
/// The `mem::swap` function uses `mem::forget` to good effect:
///
/// ```rust
/// use std::mem;
/// use std::ptr;
///
/// fn swap<T>(x: &mut T, y: &mut T) {
///     unsafe {
///         // Give ourselves some scratch space to work with
///         let mut t: T = mem::uninitialized();
///
///         // Perform the swap, `&mut` pointers never alias
///         ptr::copy_nonoverlapping(&*x, &mut t, 1);
///         ptr::copy_nonoverlapping(&*y, x, 1);
///         ptr::copy_nonoverlapping(&t, y, 1);
///
///         // y and t now point to the same thing, but we need to completely
///         // forget `t` because we do not want to run the destructor for `T`
///         // on its value, which is still owned somewhere outside this function.
///         mem::forget(t);
///     }
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn forget<T>(t: T) {
    unsafe { intrinsics::forget(t) }
}

/// Returns the size of a type in bytes.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::size_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn size_of<T>() -> usize {
    unsafe { intrinsics::size_of::<T>() }
}

/// Returns the size of the type that `val` points to in bytes.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::size_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn size_of_val<T: ?Sized>(val: &T) -> usize {
    unsafe { intrinsics::size_of_val(val) }
}

/// Returns the ABI-required minimum alignment of a type
///
/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::min_align_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(reason = "use `align_of` instead", since = "1.2.0")]
pub fn min_align_of<T>() -> usize {
    unsafe { intrinsics::min_align_of::<T>() }
}

/// Returns the ABI-required minimum alignment of the type of the value that `val` points to
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::min_align_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[deprecated(reason = "use `align_of_val` instead", since = "1.2.0")]
pub fn min_align_of_val<T: ?Sized>(val: &T) -> usize {
    unsafe { intrinsics::min_align_of_val(val) }
}

/// Returns the alignment in memory for a type.
///
/// This is the alignment used for struct fields. It may be smaller than the preferred alignment.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::align_of::<i32>());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn align_of<T>() -> usize {
    unsafe { intrinsics::min_align_of::<T>() }
}

/// Returns the ABI-required minimum alignment of the type of the value that `val` points to
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// assert_eq!(4, mem::align_of_val(&5i32));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn align_of_val<T: ?Sized>(val: &T) -> usize {
    unsafe { intrinsics::min_align_of_val(val) }
}

/// Creates a value initialized to zero.
///
/// This function is similar to allocating space for a local variable and zeroing it out (an unsafe
/// operation).
///
/// Care must be taken when using this function, if the type `T` has a destructor and the value
/// falls out of scope (due to unwinding or returning) before being initialized, then the
/// destructor will run on zeroed data, likely leading to crashes.
///
/// This is useful for FFI functions sometimes, but should generally be avoided.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let x: i32 = unsafe { mem::zeroed() };
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn zeroed<T>() -> T {
    intrinsics::init()
}

/// Creates a value initialized to an unspecified series of bytes.
///
/// The byte sequence usually indicates that the value at the memory
/// in question has been dropped. Thus, *if* T carries a drop flag,
/// any associated destructor will not be run when the value falls out
/// of scope.
///
/// Some code at one time used the `zeroed` function above to
/// accomplish this goal.
///
/// This function is expected to be deprecated with the transition
/// to non-zeroing drop.
#[inline]
#[unstable(feature = "filling_drop", issue = "5016")]
pub unsafe fn dropped<T>() -> T {
    #[inline(always)]
    unsafe fn dropped_impl<T>() -> T { intrinsics::init_dropped() }

    dropped_impl()
}

/// Bypasses Rust's normal memory-initialization checks by pretending to
/// produce a value of type T, while doing nothing at all.
///
/// **This is incredibly dangerous, and should not be done lightly. Deeply
/// consider initializing your memory with a default value instead.**
///
/// This is useful for FFI functions and initializing arrays sometimes,
/// but should generally be avoided.
///
/// # Undefined Behaviour
///
/// It is Undefined Behaviour to read uninitialized memory. Even just an
/// uninitialized boolean. For instance, if you branch on the value of such
/// a boolean your program may take one, both, or neither of the branches.
///
/// Note that this often also includes *writing* to the uninitialized value.
/// Rust believes the value is initialized, and will therefore try to Drop
/// the uninitialized value and its fields if you try to overwrite the memory
/// in a normal manner. The only way to safely initialize an arbitrary
/// uninitialized value is with one of the `ptr` functions: `write`, `copy`, or
/// `copy_nonoverlapping`. This isn't necessary if `T` is a primitive
/// or otherwise only contains types that don't implement Drop.
///
/// If this value *does* need some kind of Drop, it must be initialized before
/// it goes out of scope (and therefore would be dropped). Note that this
/// includes a `panic` occurring and unwinding the stack suddenly.
///
/// # Examples
///
/// Here's how to safely initialize an array of `Vec`s.
///
/// ```
/// use std::mem;
/// use std::ptr;
///
/// // Only declare the array. This safely leaves it
/// // uninitialized in a way that Rust will track for us.
/// // However we can't initialize it element-by-element
/// // safely, and we can't use the `[value; 1000]`
/// // constructor because it only works with `Copy` data.
/// let mut data: [Vec<u32>; 1000];
///
/// unsafe {
///     // So we need to do this to initialize it.
///     data = mem::uninitialized();
///
///     // DANGER ZONE: if anything panics or otherwise
///     // incorrectly reads the array here, we will have
///     // Undefined Behaviour.
///
///     // It's ok to mutably iterate the data, since this
///     // doesn't involve reading it at all.
///     // (ptr and len are statically known for arrays)
///     for elem in &mut data[..] {
///         // *elem = Vec::new() would try to drop the
///         // uninitialized memory at `elem` -- bad!
///         //
///         // Vec::new doesn't allocate or do really
///         // anything. It's only safe to call here
///         // because we know it won't panic.
///         ptr::write(elem, Vec::new());
///     }
///
///     // SAFE ZONE: everything is initialized.
/// }
///
/// println!("{:?}", &data[0]);
/// ```
///
/// This example emphasizes exactly how delicate and dangerous doing this is.
/// Note that the `vec!` macro *does* let you initialize every element with a
/// value that is only `Clone`, so the following is semantically equivalent and
/// vastly less dangerous, as long as you can live with an extra heap
/// allocation:
///
/// ```
/// let data: Vec<Vec<u32>> = vec![Vec::new(); 1000];
/// println!("{:?}", &data[0]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn uninitialized<T>() -> T {
    intrinsics::uninit()
}

/// Swap the values at two mutable locations of the same type, without deinitialising or copying
/// either one.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let x = &mut 5;
/// let y = &mut 42;
///
/// mem::swap(x, y);
///
/// assert_eq!(42, *x);
/// assert_eq!(5, *y);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn swap<T>(x: &mut T, y: &mut T) {
    unsafe {
        // Give ourselves some scratch space to work with
        let mut t: T = uninitialized();

        // Perform the swap, `&mut` pointers never alias
        ptr::copy_nonoverlapping(&*x, &mut t, 1);
        ptr::copy_nonoverlapping(&*y, x, 1);
        ptr::copy_nonoverlapping(&t, y, 1);

        // y and t now point to the same thing, but we need to completely
        // forget `t` because we do not want to run the destructor for `T`
        // on its value, which is still owned somewhere outside this function.
        forget(t);
    }
}

/// Replaces the value at a mutable location with a new one, returning the old value, without
/// deinitialising or copying either one.
///
/// This is primarily used for transferring and swapping ownership of a value in a mutable
/// location.
///
/// # Examples
///
/// A simple example:
///
/// ```
/// use std::mem;
///
/// let mut v: Vec<i32> = Vec::new();
///
/// mem::replace(&mut v, Vec::new());
/// ```
///
/// This function allows consumption of one field of a struct by replacing it with another value.
/// The normal approach doesn't always work:
///
/// ```rust,ignore
/// struct Buffer<T> { buf: Vec<T> }
///
/// impl<T> Buffer<T> {
///     fn get_and_reset(&mut self) -> Vec<T> {
///         // error: cannot move out of dereference of `&mut`-pointer
///         let buf = self.buf;
///         self.buf = Vec::new();
///         buf
///     }
/// }
/// ```
///
/// Note that `T` does not necessarily implement `Clone`, so it can't even clone and reset
/// `self.buf`. But `replace` can be used to disassociate the original value of `self.buf` from
/// `self`, allowing it to be returned:
///
/// ```
/// use std::mem;
/// # struct Buffer<T> { buf: Vec<T> }
/// impl<T> Buffer<T> {
///     fn get_and_reset(&mut self) -> Vec<T> {
///         mem::replace(&mut self.buf, Vec::new())
///     }
/// }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn replace<T>(dest: &mut T, mut src: T) -> T {
    swap(dest, &mut src);
    src
}

/// Disposes of a value.
///
/// While this does call the argument's implementation of `Drop`, it will not
/// release any borrows, as borrows are based on lexical scope.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let v = vec![1, 2, 3];
///
/// drop(v); // explicitly drop the vector
/// ```
///
/// Borrows are based on lexical scope, so this produces an error:
///
/// ```ignore
/// let mut v = vec![1, 2, 3];
/// let x = &v[0];
///
/// drop(x); // explicitly drop the reference, but the borrow still exists
///
/// v.push(4); // error: cannot borrow `v` as mutable because it is also
///            // borrowed as immutable
/// ```
///
/// An inner scope is needed to fix this:
///
/// ```
/// let mut v = vec![1, 2, 3];
///
/// {
///     let x = &v[0];
///
///     drop(x); // this is now redundant, as `x` is going out of scope anyway
/// }
///
/// v.push(4); // no problems
/// ```
///
/// Since `RefCell` enforces the borrow rules at runtime, `drop()` can
/// seemingly release a borrow of one:
///
/// ```
/// use std::cell::RefCell;
///
/// let x = RefCell::new(1);
///
/// let mut mutable_borrow = x.borrow_mut();
/// *mutable_borrow = 1;
///
/// drop(mutable_borrow); // relinquish the mutable borrow on this slot
///
/// let borrow = x.borrow();
/// println!("{}", *borrow);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn drop<T>(_x: T) { }

macro_rules! repeat_u8_as_u32 {
    ($name:expr) => { (($name as u32) << 24 |
                       ($name as u32) << 16 |
                       ($name as u32) <<  8 |
                       ($name as u32)) }
}
macro_rules! repeat_u8_as_u64 {
    ($name:expr) => { ((repeat_u8_as_u32!($name) as u64) << 32 |
                       (repeat_u8_as_u32!($name) as u64)) }
}

// NOTE: Keep synchronized with values used in librustc_trans::trans::adt.
//
// In particular, the POST_DROP_U8 marker must never equal the
// DTOR_NEEDED_U8 marker.
//
// For a while pnkfelix was using 0xc1 here.
// But having the sign bit set is a pain, so 0x1d is probably better.
//
// And of course, 0x00 brings back the old world of zero'ing on drop.
#[unstable(feature = "filling_drop", issue = "5016")]
#[allow(missing_docs)]
pub const POST_DROP_U8: u8 = 0x1d;
#[unstable(feature = "filling_drop", issue = "5016")]
#[allow(missing_docs)]
pub const POST_DROP_U32: u32 = repeat_u8_as_u32!(POST_DROP_U8);
#[unstable(feature = "filling_drop", issue = "5016")]
#[allow(missing_docs)]
pub const POST_DROP_U64: u64 = repeat_u8_as_u64!(POST_DROP_U8);

#[cfg(target_pointer_width = "32")]
#[unstable(feature = "filling_drop", issue = "5016")]
#[allow(missing_docs)]
pub const POST_DROP_USIZE: usize = POST_DROP_U32 as usize;
#[cfg(target_pointer_width = "64")]
#[unstable(feature = "filling_drop", issue = "5016")]
#[allow(missing_docs)]
pub const POST_DROP_USIZE: usize = POST_DROP_U64 as usize;

/// Interprets `src` as `&U`, and then reads `src` without moving the contained
/// value.
///
/// This function will unsafely assume the pointer `src` is valid for
/// `sizeof(U)` bytes by transmuting `&T` to `&U` and then reading the `&U`. It
/// will also unsafely create a copy of the contained value instead of moving
/// out of `src`.
///
/// It is not a compile-time error if `T` and `U` have different sizes, but it
/// is highly encouraged to only invoke this function where `T` and `U` have the
/// same size. This function triggers undefined behavior if `U` is larger than
/// `T`.
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let one = unsafe { mem::transmute_copy(&1) };
///
/// assert_eq!(1, one);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn transmute_copy<T, U>(src: &T) -> U {
    // FIXME(#23542) Replace with type ascription.
    #![allow(trivial_casts)]
    ptr::read(src as *const T as *const U)
}