1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A dynamically-sized view into a contiguous sequence, `[T]`. //! //! Slices are a view into a block of memory represented as a pointer and a //! length. //! //! ``` //! // slicing a Vec //! let vec = vec![1, 2, 3]; //! let int_slice = &vec[..]; //! // coercing an array to a slice //! let str_slice: &[&str] = &["one", "two", "three"]; //! ``` //! //! Slices are either mutable or shared. The shared slice type is `&[T]`, //! while the mutable slice type is `&mut [T]`, where `T` represents the element //! type. For example, you can mutate the block of memory that a mutable slice //! points to: //! //! ``` //! let x = &mut [1, 2, 3]; //! x[1] = 7; //! assert_eq!(x, &[1, 7, 3]); //! ``` //! //! Here are some of the things this module contains: //! //! ## Structs //! //! There are several structs that are useful for slices, such as `Iter`, which //! represents iteration over a slice. //! //! ## Trait Implementations //! //! There are several implementations of common traits for slices. Some examples //! include: //! //! * `Clone` //! * `Eq`, `Ord` - for slices whose element type are `Eq` or `Ord`. //! * `Hash` - for slices whose element type is `Hash` //! //! ## Iteration //! //! The slices implement `IntoIterator`. The iterator yields references to the //! slice elements. //! //! ``` //! let numbers = &[0, 1, 2]; //! for n in numbers { //! println!("{} is a number!", n); //! } //! ``` //! //! The mutable slice yields mutable references to the elements: //! //! ``` //! let mut scores = [7, 8, 9]; //! for score in &mut scores[..] { //! *score += 1; //! } //! ``` //! //! This iterator yields mutable references to the slice's elements, so while //! the element type of the slice is `i32`, the element type of the iterator is //! `&mut i32`. //! //! * `.iter()` and `.iter_mut()` are the explicit methods to return the default //! iterators. //! * Further methods that return iterators are `.split()`, `.splitn()`, //! `.chunks()`, `.windows()` and more. //! //! *[See also the slice primitive type](../primitive.slice.html).* #![stable(feature = "rust1", since = "1.0.0")] // Many of the usings in this module are only used in the test configuration. // It's cleaner to just turn off the unused_imports warning than to fix them. #![allow(unused_imports)] use alloc::boxed::Box; use core::clone::Clone; use core::cmp::Ordering::{self, Greater, Less}; use core::cmp::{self, Ord, PartialEq}; use core::iter::Iterator; use core::marker::Sized; use core::mem::size_of; use core::mem; use core::ops::FnMut; use core::option::Option::{self, Some, None}; use core::ptr; use core::result::Result; use core::slice as core_slice; use borrow::{Borrow, BorrowMut, ToOwned}; use vec::Vec; pub use core::slice::{Chunks, Windows}; pub use core::slice::{Iter, IterMut}; pub use core::slice::{SplitMut, ChunksMut, Split}; pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut}; pub use core::slice::{bytes, mut_ref_slice, ref_slice}; pub use core::slice::{from_raw_parts, from_raw_parts_mut}; //////////////////////////////////////////////////////////////////////////////// // Basic slice extension methods //////////////////////////////////////////////////////////////////////////////// // HACK(japaric) needed for the implementation of `vec!` macro during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::into_vec; // HACK(japaric) needed for the implementation of `Vec::clone` during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::to_vec; // HACK(japaric): With cfg(test) `impl [T]` is not available, these three // functions are actually methods that are in `impl [T]` but not in // `core::slice::SliceExt` - we need to supply these functions for the // `test_permutations` test mod hack { use alloc::boxed::Box; use core::clone::Clone; #[cfg(test)] use core::iter::Iterator; use core::mem; #[cfg(test)] use core::option::Option::{Some, None}; #[cfg(test)] use string::ToString; use vec::Vec; pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> { unsafe { let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len()); mem::forget(b); xs } } #[inline] pub fn to_vec<T>(s: &[T]) -> Vec<T> where T: Clone { let mut vector = Vec::with_capacity(s.len()); vector.push_all(s); vector } } /// Allocating extension methods for slices. #[lang = "slice"] #[cfg(not(test))] #[stable(feature = "rust1", since = "1.0.0")] impl<T> [T] { /// Returns the number of elements in the slice. /// /// # Example /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn len(&self) -> usize { core_slice::SliceExt::len(self) } /// Returns true if the slice has a length of 0 /// /// # Example /// /// ``` /// let a = [1, 2, 3]; /// assert!(!a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_empty(&self) -> bool { core_slice::SliceExt::is_empty(self) } /// Returns the first element of a slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&10), v.first()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.first()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first(&self) -> Option<&T> { core_slice::SliceExt::first(self) } /// Returns a mutable pointer to the first element of a slice, or `None` if it is empty #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::first_mut(self) } /// Returns the first and all the rest of the elements of a slice. #[unstable(feature = "slice_splits", reason = "new API", issue = "27742")] #[inline] pub fn split_first(&self) -> Option<(&T, &[T])> { core_slice::SliceExt::split_first(self) } /// Returns the first and all the rest of the elements of a slice. #[unstable(feature = "slice_splits", reason = "new API", issue = "27742")] #[inline] pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> { core_slice::SliceExt::split_first_mut(self) } /// Returns the last and all the rest of the elements of a slice. #[unstable(feature = "slice_splits", reason = "new API", issue = "27742")] #[inline] pub fn split_last(&self) -> Option<(&T, &[T])> { core_slice::SliceExt::split_last(self) } /// Returns the last and all the rest of the elements of a slice. #[unstable(feature = "slice_splits", reason = "new API", issue = "27742")] #[inline] pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> { core_slice::SliceExt::split_last_mut(self) } /// Returns the last element of a slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&30), v.last()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.last()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last(&self) -> Option<&T> { core_slice::SliceExt::last(self) } /// Returns a mutable pointer to the last item in the slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::last_mut(self) } /// Returns the element of a slice at the given index, or `None` if the /// index is out of bounds. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&40), v.get(1)); /// assert_eq!(None, v.get(3)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get(&self, index: usize) -> Option<&T> { core_slice::SliceExt::get(self, index) } /// Returns a mutable reference to the element at the given index, /// or `None` if the index is out of bounds #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get_mut(&mut self, index: usize) -> Option<&mut T> { core_slice::SliceExt::get_mut(self, index) } /// Returns a pointer to the element at the given index, without doing /// bounds checking. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked(&self, index: usize) -> &T { core_slice::SliceExt::get_unchecked(self, index) } /// Returns an unsafe mutable pointer to the element in index #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T { core_slice::SliceExt::get_unchecked_mut(self, index) } /// Returns an raw pointer to the slice's buffer /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_ptr(&self) -> *const T { core_slice::SliceExt::as_ptr(self) } /// Returns an unsafe mutable pointer to the slice's buffer. /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the slice may cause its buffer to be reallocated, which /// would also make any pointers to it invalid. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_mut_ptr(&mut self) -> *mut T { core_slice::SliceExt::as_mut_ptr(self) } /// Swaps two elements in a slice. /// /// # Arguments /// /// * a - The index of the first element /// * b - The index of the second element /// /// # Panics /// /// Panics if `a` or `b` are out of bounds. /// /// # Example /// /// ```rust /// let mut v = ["a", "b", "c", "d"]; /// v.swap(1, 3); /// assert!(v == ["a", "d", "c", "b"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn swap(&mut self, a: usize, b: usize) { core_slice::SliceExt::swap(self, a, b) } /// Reverse the order of elements in a slice, in place. /// /// # Example /// /// ```rust /// let mut v = [1, 2, 3]; /// v.reverse(); /// assert!(v == [3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn reverse(&mut self) { core_slice::SliceExt::reverse(self) } /// Returns an iterator over the slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter(&self) -> Iter<T> { core_slice::SliceExt::iter(self) } /// Returns an iterator that allows modifying each value #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter_mut(&mut self) -> IterMut<T> { core_slice::SliceExt::iter_mut(self) } /// Returns an iterator over all contiguous windows of length /// `size`. The windows overlap. If the slice is shorter than /// `size`, the iterator returns no values. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// Print the adjacent pairs of a slice (i.e. `[1,2]`, `[2,3]`, /// `[3,4]`): /// /// ```rust /// let v = &[1, 2, 3, 4]; /// for win in v.windows(2) { /// println!("{:?}", win); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn windows(&self, size: usize) -> Windows<T> { core_slice::SliceExt::windows(self, size) } /// Returns an iterator over `size` elements of the slice at a /// time. The chunks do not overlap. If `size` does not divide the /// length of the slice, then the last chunk will not have length /// `size`. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Example /// /// Print the slice two elements at a time (i.e. `[1,2]`, /// `[3,4]`, `[5]`): /// /// ```rust /// let v = &[1, 2, 3, 4, 5]; /// for win in v.chunks(2) { /// println!("{:?}", win); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks(&self, size: usize) -> Chunks<T> { core_slice::SliceExt::chunks(self, size) } /// Returns an iterator over `chunk_size` elements of the slice at a time. /// The chunks are mutable and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last chunk will not /// have length `chunk_size`. /// /// # Panics /// /// Panics if `chunk_size` is 0. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> { core_slice::SliceExt::chunks_mut(self, chunk_size) } /// Divides one slice into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// Panics if `mid > len`. /// /// # Examples /// /// ``` /// let v = [10, 40, 30, 20, 50]; /// let (v1, v2) = v.split_at(2); /// assert_eq!([10, 40], v1); /// assert_eq!([30, 20, 50], v2); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at(&self, mid: usize) -> (&[T], &[T]) { core_slice::SliceExt::split_at(self, mid) } /// Divides one `&mut` into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// # Panics /// /// Panics if `mid > len`. /// /// # Example /// /// ```rust /// let mut v = [1, 2, 3, 4, 5, 6]; /// /// // scoped to restrict the lifetime of the borrows /// { /// let (left, right) = v.split_at_mut(0); /// assert!(left == []); /// assert!(right == [1, 2, 3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(2); /// assert!(left == [1, 2]); /// assert!(right == [3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at_mut(6); /// assert!(left == [1, 2, 3, 4, 5, 6]); /// assert!(right == []); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { core_slice::SliceExt::split_at_mut(self, mid) } /// Returns an iterator over subslices separated by elements that match /// `pred`. The matched element is not contained in the subslices. /// /// # Examples /// /// Print the slice split by numbers divisible by 3 (i.e. `[10, 40]`, /// `[20]`, `[50]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// for group in v.split(|num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::split(self, pred) } /// Returns an iterator over mutable subslices separated by elements that /// match `pred`. The matched element is not contained in the subslices. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::split_mut(self, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, /// `[20, 60, 50]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// for group in v.splitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn_mut(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once, starting from the end, by numbers divisible /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// for group in v.rsplitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn_mut(self, n, pred) } /// Returns true if the slice contains an element with the given value. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.contains(&30)); /// assert!(!v.contains(&50)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn contains(&self, x: &T) -> bool where T: PartialEq { core_slice::SliceExt::contains(self, x) } /// Returns true if `needle` is a prefix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.starts_with(&[10])); /// assert!(v.starts_with(&[10, 40])); /// assert!(!v.starts_with(&[50])); /// assert!(!v.starts_with(&[10, 50])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::starts_with(self, needle) } /// Returns true if `needle` is a suffix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.ends_with(&[30])); /// assert!(v.ends_with(&[40, 30])); /// assert!(!v.ends_with(&[50])); /// assert!(!v.ends_with(&[50, 30])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::ends_with(self, needle) } /// Binary search a sorted slice for a given element. /// /// If the value is found then `Ok` is returned, containing the /// index of the matching element; if the value is not found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1,4]`. /// /// ```rust /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// assert_eq!(s.binary_search(&13), Ok(9)); /// assert_eq!(s.binary_search(&4), Err(7)); /// assert_eq!(s.binary_search(&100), Err(13)); /// let r = s.binary_search(&1); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord { core_slice::SliceExt::binary_search(self, x) } /// Binary search a sorted slice with a comparator function. /// /// The comparator function should implement an order consistent /// with the sort order of the underlying slice, returning an /// order code that indicates whether its argument is `Less`, /// `Equal` or `Greater` the desired target. /// /// If a matching value is found then returns `Ok`, containing /// the index for the matched element; if no match is found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Example /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1,4]`. /// /// ```rust /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// let seek = 13; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); /// let seek = 4; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); /// let seek = 100; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); /// let seek = 1; /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering { core_slice::SliceExt::binary_search_by(self, f) } /// Sorts the slice, in place. /// /// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`. /// /// # Examples /// /// ```rust /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort(); /// assert!(v == [-5, -3, 1, 2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort(&mut self) where T: Ord { self.sort_by(|a, b| a.cmp(b)) } /// Sorts the slice, in place, using `compare` to compare /// elements. /// /// This sort is `O(n log n)` worst-case and stable, but allocates /// approximately `2 * n`, where `n` is the length of `self`. /// /// # Examples /// /// ```rust /// let mut v = [5, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering { merge_sort(self, compare) } /// Copies as many elements from `src` as it can into `self` (the /// shorter of `self.len()` and `src.len()`). Returns the number /// of elements copied. /// /// # Example /// /// ```rust /// #![feature(clone_from_slice)] /// /// let mut dst = [0, 0, 0]; /// let src = [1, 2]; /// /// assert!(dst.clone_from_slice(&src) == 2); /// assert!(dst == [1, 2, 0]); /// /// let src2 = [3, 4, 5, 6]; /// assert!(dst.clone_from_slice(&src2) == 3); /// assert!(dst == [3, 4, 5]); /// ``` #[unstable(feature = "clone_from_slice", issue = "27750")] pub fn clone_from_slice(&mut self, src: &[T]) -> usize where T: Clone { core_slice::SliceExt::clone_from_slice(self, src) } /// Copies `self` into a new `Vec`. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_vec(&self) -> Vec<T> where T: Clone { // NB see hack module in this file hack::to_vec(self) } /// Converts `self` into a vector without clones or allocation. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn into_vec(self: Box<Self>) -> Vec<T> { // NB see hack module in this file hack::into_vec(self) } } //////////////////////////////////////////////////////////////////////////////// // Extension traits for slices over specific kinds of data //////////////////////////////////////////////////////////////////////////////// #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// An extension trait for concatenating slices pub trait SliceConcatExt<T: ?Sized> { #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// The resulting type after concatenation type Output; /// Flattens a slice of `T` into a single value `Self::Output`. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].concat(), "helloworld"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn concat(&self) -> Self::Output; /// Flattens a slice of `T` into a single value `Self::Output`, placing a /// given separator between each. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].join(" "), "hello world"); /// ``` #[stable(feature = "rename_connect_to_join", since = "1.3.0")] fn join(&self, sep: &T) -> Self::Output; /// Flattens a slice of `T` into a single value `Self::Output`, placing a /// given separator between each. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].connect(" "), "hello world"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[deprecated(since = "1.3.0", reason = "renamed to join")] fn connect(&self, sep: &T) -> Self::Output; } impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] { type Output = Vec<T>; fn concat(&self) -> Vec<T> { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size); for v in self { result.push_all(v.borrow()) } result } fn join(&self, sep: &T) -> Vec<T> { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size + self.len()); let mut first = true; for v in self { if first { first = false } else { result.push(sep.clone()) } result.push_all(v.borrow()) } result } fn connect(&self, sep: &T) -> Vec<T> { self.join(sep) } } //////////////////////////////////////////////////////////////////////////////// // Standard trait implementations for slices //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<T> Borrow<[T]> for Vec<T> { fn borrow(&self) -> &[T] { &self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> BorrowMut<[T]> for Vec<T> { fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Clone> ToOwned for [T] { type Owned = Vec<T>; #[cfg(not(test))] fn to_owned(&self) -> Vec<T> { self.to_vec() } // HACK(japaric): with cfg(test) the inherent `[T]::to_vec`, which is required for this method // definition, is not available. Since we don't require this method for testing purposes, I'll // just stub it // NB see the slice::hack module in slice.rs for more information #[cfg(test)] fn to_owned(&self) -> Vec<T> { panic!("not available with cfg(test)") } } //////////////////////////////////////////////////////////////////////////////// // Sorting //////////////////////////////////////////////////////////////////////////////// fn insertion_sort<T, F>(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { let len = v.len() as isize; let buf_v = v.as_mut_ptr(); // 1 <= i < len; for i in 1..len { // j satisfies: 0 <= j <= i; let mut j = i; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i) as *const T; // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // 0 <= j - 1 < len, so .offset(j - 1) is in bounds. while j > 0 && compare(&*read_ptr, &*buf_v.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. if i != j { let tmp = ptr::read(read_ptr); ptr::copy(&*buf_v.offset(j), buf_v.offset(j + 1), (i - j) as usize); ptr::copy_nonoverlapping(&tmp, buf_v.offset(j), 1); mem::forget(tmp); } } } } fn merge_sort<T, F>(v: &mut [T], mut compare: F) where F: FnMut(&T, &T) -> Ordering { // warning: this wildly uses unsafe. const BASE_INSERTION: usize = 32; const LARGE_INSERTION: usize = 16; // FIXME #12092: smaller insertion runs seems to make sorting // vectors of large elements a little faster on some platforms, // but hasn't been tested/tuned extensively let insertion = if size_of::<T>() <= 16 { BASE_INSERTION } else { LARGE_INSERTION }; let len = v.len(); // short vectors get sorted in-place via insertion sort to avoid allocations if len <= insertion { insertion_sort(v, compare); return; } // allocate some memory to use as scratch memory, we keep the // length 0 so we can keep shallow copies of the contents of `v` // without risking the dtors running on an object twice if // `compare` panics. let mut working_space = Vec::with_capacity(2 * len); // these both are buffers of length `len`. let mut buf_dat = working_space.as_mut_ptr(); let mut buf_tmp = unsafe {buf_dat.offset(len as isize)}; // length `len`. let buf_v = v.as_ptr(); // step 1. sort short runs with insertion sort. This takes the // values from `v` and sorts them into `buf_dat`, leaving that // with sorted runs of length INSERTION. // We could hardcode the sorting comparisons here, and we could // manipulate/step the pointers themselves, rather than repeatedly // .offset-ing. for start in (0.. len).step_by(insertion) { // start <= i < len; for i in start..cmp::min(start + insertion, len) { // j satisfies: start <= j <= i; let mut j = i as isize; unsafe { // `i` is in bounds. let read_ptr = buf_v.offset(i as isize); // find where to insert, we need to do strict <, // rather than <=, to maintain stability. // start <= j - 1 < len, so .offset(j - 1) is in // bounds. while j > start as isize && compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less { j -= 1; } // shift everything to the right, to make space to // insert this value. // j + 1 could be `len` (for the last `i`), but in // that case, `i == j` so we don't copy. The // `.offset(j)` is always in bounds. ptr::copy(&*buf_dat.offset(j), buf_dat.offset(j + 1), i - j as usize); ptr::copy_nonoverlapping(read_ptr, buf_dat.offset(j), 1); } } } // step 2. merge the sorted runs. let mut width = insertion; while width < len { // merge the sorted runs of length `width` in `buf_dat` two at // a time, placing the result in `buf_tmp`. // 0 <= start <= len. for start in (0..len).step_by(2 * width) { // manipulate pointers directly for speed (rather than // using a `for` loop with `range` and `.offset` inside // that loop). unsafe { // the end of the first run & start of the // second. Offset of `len` is defined, since this is // precisely one byte past the end of the object. let right_start = buf_dat.offset(cmp::min(start + width, len) as isize); // end of the second. Similar reasoning to the above re safety. let right_end_idx = cmp::min(start + 2 * width, len); let right_end = buf_dat.offset(right_end_idx as isize); // the pointers to the elements under consideration // from the two runs. // both of these are in bounds. let mut left = buf_dat.offset(start as isize); let mut right = right_start; // where we're putting the results, it is a run of // length `2*width`, so we step it once for each step // of either `left` or `right`. `buf_tmp` has length // `len`, so these are in bounds. let mut out = buf_tmp.offset(start as isize); let out_end = buf_tmp.offset(right_end_idx as isize); while out < out_end { // Either the left or the right run are exhausted, // so just copy the remainder from the other run // and move on; this gives a huge speed-up (order // of 25%) for mostly sorted vectors (the best // case). if left == right_start { // the number remaining in this run. let elems = (right_end as usize - right as usize) / mem::size_of::<T>(); ptr::copy_nonoverlapping(&*right, out, elems); break; } else if right == right_end { let elems = (right_start as usize - left as usize) / mem::size_of::<T>(); ptr::copy_nonoverlapping(&*left, out, elems); break; } // check which side is smaller, and that's the // next element for the new run. // `left < right_start` and `right < right_end`, // so these are valid. let to_copy = if compare(&*left, &*right) == Greater { step(&mut right) } else { step(&mut left) }; ptr::copy_nonoverlapping(&*to_copy, out, 1); step(&mut out); } } } mem::swap(&mut buf_dat, &mut buf_tmp); width *= 2; } // write the result to `v` in one go, so that there are never two copies // of the same object in `v`. unsafe { ptr::copy_nonoverlapping(&*buf_dat, v.as_mut_ptr(), len); } // increment the pointer, returning the old pointer. #[inline(always)] unsafe fn step<T>(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = ptr.offset(1); old } }