1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![stable(feature = "rust1", since = "1.0.0")]

//! Threadsafe reference-counted boxes (the `Arc<T>` type).
//!
//! The `Arc<T>` type provides shared ownership of an immutable value.
//! Destruction is deterministic, and will occur as soon as the last owner is
//! gone. It is marked as `Send` because it uses atomic reference counting.
//!
//! If you do not need thread-safety, and just need shared ownership, consider
//! the [`Rc<T>` type](../rc/struct.Rc.html). It is the same as `Arc<T>`, but
//! does not use atomics, making it both thread-unsafe as well as significantly
//! faster when updating the reference count.
//!
//! The `downgrade` method can be used to create a non-owning `Weak<T>` pointer
//! to the box. A `Weak<T>` pointer can be upgraded to an `Arc<T>` pointer, but
//! will return `None` if the value has already been dropped.
//!
//! For example, a tree with parent pointers can be represented by putting the
//! nodes behind strong `Arc<T>` pointers, and then storing the parent pointers
//! as `Weak<T>` pointers.
//!
//! # Examples
//!
//! Sharing some immutable data between threads:
//!
//! ```no_run
//! use std::sync::Arc;
//! use std::thread;
//!
//! let five = Arc::new(5);
//!
//! for _ in 0..10 {
//!     let five = five.clone();
//!
//!     thread::spawn(move || {
//!         println!("{:?}", five);
//!     });
//! }
//! ```
//!
//! Sharing mutable data safely between threads with a `Mutex`:
//!
//! ```no_run
//! use std::sync::{Arc, Mutex};
//! use std::thread;
//!
//! let five = Arc::new(Mutex::new(5));
//!
//! for _ in 0..10 {
//!     let five = five.clone();
//!
//!     thread::spawn(move || {
//!         let mut number = five.lock().unwrap();
//!
//!         *number += 1;
//!
//!         println!("{}", *number); // prints 6
//!     });
//! }
//! ```

use boxed::Box;

use core::atomic;
use core::atomic::Ordering::{Relaxed, Release, Acquire, SeqCst};
use core::fmt;
use core::cmp::Ordering;
use core::mem::{align_of_val, size_of_val};
use core::intrinsics::{drop_in_place, abort};
use core::mem;
use core::nonzero::NonZero;
use core::ops::{Deref, CoerceUnsized};
use core::ptr;
use core::marker::Unsize;
use core::hash::{Hash, Hasher};
use core::{usize, isize};
use heap::deallocate;

const MAX_REFCOUNT: usize = (isize::MAX) as usize;

/// An atomically reference counted wrapper for shared state.
///
/// # Examples
///
/// In this example, a large vector of floats is shared between several threads.
/// With simple pipes, without `Arc`, a copy would have to be made for each
/// thread.
///
/// When you clone an `Arc<T>`, it will create another pointer to the data and
/// increase the reference counter.
///
/// ```
/// use std::sync::Arc;
/// use std::thread;
///
/// fn main() {
///     let numbers: Vec<_> = (0..100u32).collect();
///     let shared_numbers = Arc::new(numbers);
///
///     for _ in 0..10 {
///         let child_numbers = shared_numbers.clone();
///
///         thread::spawn(move || {
///             let local_numbers = &child_numbers[..];
///
///             // Work with the local numbers
///         });
///     }
/// }
/// ```
#[unsafe_no_drop_flag]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Arc<T: ?Sized> {
    // FIXME #12808: strange name to try to avoid interfering with
    // field accesses of the contained type via Deref
    _ptr: NonZero<*mut ArcInner<T>>,
}

unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> { }
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> { }

impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {}

/// A weak pointer to an `Arc`.
///
/// Weak pointers will not keep the data inside of the `Arc` alive, and can be
/// used to break cycles between `Arc` pointers.
#[unsafe_no_drop_flag]
#[unstable(feature = "arc_weak",
           reason = "Weak pointers may not belong in this module.",
           issue = "27718")]
pub struct Weak<T: ?Sized> {
    // FIXME #12808: strange name to try to avoid interfering with
    // field accesses of the contained type via Deref
    _ptr: NonZero<*mut ArcInner<T>>,
}

unsafe impl<T: ?Sized + Sync + Send> Send for Weak<T> { }
unsafe impl<T: ?Sized + Sync + Send> Sync for Weak<T> { }

impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "(Weak)")
    }
}

struct ArcInner<T: ?Sized> {
    strong: atomic::AtomicUsize,

    // the value usize::MAX acts as a sentinel for temporarily "locking" the
    // ability to upgrade weak pointers or downgrade strong ones; this is used
    // to avoid races in `make_unique` and `get_mut`.
    weak: atomic::AtomicUsize,

    data: T,
}

unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}

impl<T> Arc<T> {
    /// Constructs a new `Arc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    /// ```
    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new(data: T) -> Arc<T> {
        // Start the weak pointer count as 1 which is the weak pointer that's
        // held by all the strong pointers (kinda), see std/rc.rs for more info
        let x: Box<_> = box ArcInner {
            strong: atomic::AtomicUsize::new(1),
            weak: atomic::AtomicUsize::new(1),
            data: data,
        };
        Arc { _ptr: unsafe { NonZero::new(Box::into_raw(x)) } }
    }
}

impl<T: ?Sized> Arc<T> {
    /// Downgrades the `Arc<T>` to a `Weak<T>` reference.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(arc_weak)]
    ///
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// let weak_five = five.downgrade();
    /// ```
    #[unstable(feature = "arc_weak",
               reason = "Weak pointers may not belong in this module.",
               issue = "27718")]
    pub fn downgrade(&self) -> Weak<T> {
        loop {
            // This Relaxed is OK because we're checking the value in the CAS
            // below.
            let cur = self.inner().weak.load(Relaxed);

            // check if the weak counter is currently "locked"; if so, spin.
            if cur == usize::MAX { continue }

            // NOTE: this code currently ignores the possibility of overflow
            // into usize::MAX; in general both Rc and Arc need to be adjusted
            // to deal with overflow.

            // Unlike with Clone(), we need this to be an Acquire read to
            // synchronize with the write coming from `is_unique`, so that the
            // events prior to that write happen before this read.
            if self.inner().weak.compare_and_swap(cur, cur + 1, Acquire) == cur {
                return Weak { _ptr: self._ptr }
            }
        }
    }

    /// Get the number of weak references to this value.
    #[inline]
    #[unstable(feature = "arc_counts", issue = "27718")]
    pub fn weak_count(this: &Arc<T>) -> usize {
        this.inner().weak.load(SeqCst) - 1
    }

    /// Get the number of strong references to this value.
    #[inline]
    #[unstable(feature = "arc_counts", issue = "27718")]
    pub fn strong_count(this: &Arc<T>) -> usize {
        this.inner().strong.load(SeqCst)
    }

    #[inline]
    fn inner(&self) -> &ArcInner<T> {
        // This unsafety is ok because while this arc is alive we're guaranteed
        // that the inner pointer is valid. Furthermore, we know that the
        // `ArcInner` structure itself is `Sync` because the inner data is
        // `Sync` as well, so we're ok loaning out an immutable pointer to these
        // contents.
        unsafe { &**self._ptr }
    }

    // Non-inlined part of `drop`.
    #[inline(never)]
    unsafe fn drop_slow(&mut self) {
        let ptr = *self._ptr;

        // Destroy the data at this time, even though we may not free the box
        // allocation itself (there may still be weak pointers lying around).
        drop_in_place(&mut (*ptr).data);

        if self.inner().weak.fetch_sub(1, Release) == 1 {
            atomic::fence(Acquire);
            deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr))
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Clone for Arc<T> {
    /// Makes a clone of the `Arc<T>`.
    ///
    /// This increases the strong reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five.clone();
    /// ```
    #[inline]
    fn clone(&self) -> Arc<T> {
        // Using a relaxed ordering is alright here, as knowledge of the
        // original reference prevents other threads from erroneously deleting
        // the object.
        //
        // As explained in the [Boost documentation][1], Increasing the
        // reference counter can always be done with memory_order_relaxed: New
        // references to an object can only be formed from an existing
        // reference, and passing an existing reference from one thread to
        // another must already provide any required synchronization.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        let old_size = self.inner().strong.fetch_add(1, Relaxed);

        // However we need to guard against massive refcounts in case someone
        // is `mem::forget`ing Arcs. If we don't do this the count can overflow
        // and users will use-after free. We racily saturate to `isize::MAX` on
        // the assumption that there aren't ~2 billion threads incrementing
        // the reference count at once. This branch will never be taken in
        // any realistic program.
        //
        // We abort because such a program is incredibly degenerate, and we
        // don't care to support it.
        if old_size > MAX_REFCOUNT {
            unsafe { abort(); }
        }

        Arc { _ptr: self._ptr }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Deref for Arc<T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        &self.inner().data
    }
}

impl<T: Clone> Arc<T> {
    /// Make a mutable reference from the given `Arc<T>`.
    ///
    /// This is also referred to as a copy-on-write operation because the inner
    /// data is cloned if the (strong) reference count is greater than one. If
    /// we hold the only strong reference, any existing weak references will no
    /// longer be upgradeable.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(arc_unique)]
    ///
    /// use std::sync::Arc;
    ///
    /// let mut five = Arc::new(5);
    ///
    /// let mut_five = Arc::make_unique(&mut five);
    /// ```
    #[inline]
    #[unstable(feature = "arc_unique", issue = "27718")]
    pub fn make_unique(this: &mut Arc<T>) -> &mut T {
        // Note that we hold both a strong reference and a weak reference.
        // Thus, releasing our strong reference only will not, by itself, cause
        // the memory to be deallocated.
        //
        // Use Acquire to ensure that we see any writes to `weak` that happen
        // before release writes (i.e., decrements) to `strong`. Since we hold a
        // weak count, there's no chance the ArcInner itself could be
        // deallocated.
        if this.inner().strong.compare_and_swap(1, 0, Acquire) != 1 {
            // Another srong pointer exists; clone
            *this = Arc::new((**this).clone());
        } else if this.inner().weak.load(Relaxed) != 1 {
            // Relaxed suffices in the above because this is fundamentally an
            // optimization: we are always racing with weak pointers being
            // dropped. Worst case, we end up allocated a new Arc unnecessarily.

            // We removed the last strong ref, but there are additional weak
            // refs remaining. We'll move the contents to a new Arc, and
            // invalidate the other weak refs.

            // Note that it is not possible for the read of `weak` to yield
            // usize::MAX (i.e., locked), since the weak count can only be
            // locked by a thread with a strong reference.

            // Materialize our own implicit weak pointer, so that it can clean
            // up the ArcInner as needed.
            let weak = Weak { _ptr: this._ptr };

            // mark the data itself as already deallocated
            unsafe {
                // there is no data race in the implicit write caused by `read`
                // here (due to zeroing) because data is no longer accessed by
                // other threads (due to there being no more strong refs at this
                // point).
                let mut swap = Arc::new(ptr::read(&(**weak._ptr).data));
                mem::swap(this, &mut swap);
                mem::forget(swap);
            }
        } else {
            // We were the sole reference of either kind; bump back up the
            // strong ref count.
            this.inner().strong.store(1, Release);
        }

        // As with `get_mut()`, the unsafety is ok because our reference was
        // either unique to begin with, or became one upon cloning the contents.
        unsafe {
            let inner = &mut **this._ptr;
            &mut inner.data
        }
    }
}

impl<T: ?Sized> Arc<T> {
    /// Returns a mutable reference to the contained value if the `Arc<T>` is unique.
    ///
    /// Returns `None` if the `Arc<T>` is not unique.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(arc_unique, alloc)]
    ///
    /// extern crate alloc;
    /// # fn main() {
    /// use alloc::arc::Arc;
    ///
    /// let mut x = Arc::new(3);
    /// *Arc::get_mut(&mut x).unwrap() = 4;
    /// assert_eq!(*x, 4);
    ///
    /// let _y = x.clone();
    /// assert!(Arc::get_mut(&mut x).is_none());
    /// # }
    /// ```
    #[inline]
    #[unstable(feature = "arc_unique", issue = "27718")]
    pub fn get_mut(this: &mut Arc<T>) -> Option<&mut T> {
        if this.is_unique() {
            // This unsafety is ok because we're guaranteed that the pointer
            // returned is the *only* pointer that will ever be returned to T. Our
            // reference count is guaranteed to be 1 at this point, and we required
            // the Arc itself to be `mut`, so we're returning the only possible
            // reference to the inner data.
            unsafe {
                let inner = &mut **this._ptr;
                Some(&mut inner.data)
            }
        } else {
            None
        }
    }

    /// Determine whether this is the unique reference (including weak refs) to
    /// the underlying data.
    ///
    /// Note that this requires locking the weak ref count.
    fn is_unique(&mut self) -> bool {
        // lock the weak pointer count if we appear to be the sole weak pointer
        // holder.
        //
        // The acquire label here ensures a happens-before relationship with any
        // writes to `strong` prior to decrements of the `weak` count (via drop,
        // which uses Release).
        if self.inner().weak.compare_and_swap(1, usize::MAX, Acquire) == 1 {
            // Due to the previous acquire read, this will observe any writes to
            // `strong` that were due to upgrading weak pointers; only strong
            // clones remain, which require that the strong count is > 1 anyway.
            let unique = self.inner().strong.load(Relaxed) == 1;

            // The release write here synchronizes with a read in `downgrade`,
            // effectively preventing the above read of `strong` from happening
            // after the write.
            self.inner().weak.store(1, Release); // release the lock
            unique
        } else {
            false
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Drop for Arc<T> {
    /// Drops the `Arc<T>`.
    ///
    /// This will decrement the strong reference count. If the strong reference
    /// count becomes zero and the only other references are `Weak<T>` ones,
    /// `drop`s the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// {
    ///     let five = Arc::new(5);
    ///
    ///     // stuff
    ///
    ///     drop(five); // explicit drop
    /// }
    /// {
    ///     let five = Arc::new(5);
    ///
    ///     // stuff
    ///
    /// } // implicit drop
    /// ```
    #[inline]
    fn drop(&mut self) {
        // This structure has #[unsafe_no_drop_flag], so this drop glue may run
        // more than once (but it is guaranteed to be zeroed after the first if
        // it's run more than once)
        let ptr = *self._ptr;
        // if ptr.is_null() { return }
        if ptr as *mut u8 as usize == 0 || ptr as *mut u8 as usize == mem::POST_DROP_USIZE {
            return
        }

        // Because `fetch_sub` is already atomic, we do not need to synchronize
        // with other threads unless we are going to delete the object. This
        // same logic applies to the below `fetch_sub` to the `weak` count.
        if self.inner().strong.fetch_sub(1, Release) != 1 { return }

        // This fence is needed to prevent reordering of use of the data and
        // deletion of the data.  Because it is marked `Release`, the decreasing
        // of the reference count synchronizes with this `Acquire` fence. This
        // means that use of the data happens before decreasing the reference
        // count, which happens before this fence, which happens before the
        // deletion of the data.
        //
        // As explained in the [Boost documentation][1],
        //
        // > It is important to enforce any possible access to the object in one
        // > thread (through an existing reference) to *happen before* deleting
        // > the object in a different thread. This is achieved by a "release"
        // > operation after dropping a reference (any access to the object
        // > through this reference must obviously happened before), and an
        // > "acquire" operation before deleting the object.
        //
        // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
        atomic::fence(Acquire);

        unsafe {
            self.drop_slow()
        }
    }
}

#[unstable(feature = "arc_weak",
           reason = "Weak pointers may not belong in this module.",
           issue = "27718")]
impl<T: ?Sized> Weak<T> {
    /// Upgrades a weak reference to a strong reference.
    ///
    /// Upgrades the `Weak<T>` reference to an `Arc<T>`, if possible.
    ///
    /// Returns `None` if there were no strong references and the data was
    /// destroyed.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(arc_weak)]
    ///
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// let weak_five = five.downgrade();
    ///
    /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
    /// ```
    pub fn upgrade(&self) -> Option<Arc<T>> {
        // We use a CAS loop to increment the strong count instead of a
        // fetch_add because once the count hits 0 it must never be above 0.
        let inner = self.inner();
        loop {
            // Relaxed load because any write of 0 that we can observe
            // leaves the field in a permanently zero state (so a
            // "stale" read of 0 is fine), and any other value is
            // confirmed via the CAS below.
            let n = inner.strong.load(Relaxed);
            if n == 0 { return None }

            // Relaxed is valid for the same reason it is on Arc's Clone impl
            let old = inner.strong.compare_and_swap(n, n + 1, Relaxed);
            if old == n { return Some(Arc { _ptr: self._ptr }) }
        }
    }

    #[inline]
    fn inner(&self) -> &ArcInner<T> {
        // See comments above for why this is "safe"
        unsafe { &**self._ptr }
    }
}

#[unstable(feature = "arc_weak",
           reason = "Weak pointers may not belong in this module.",
           issue = "27718")]
impl<T: ?Sized> Clone for Weak<T> {
    /// Makes a clone of the `Weak<T>`.
    ///
    /// This increases the weak reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(arc_weak)]
    ///
    /// use std::sync::Arc;
    ///
    /// let weak_five = Arc::new(5).downgrade();
    ///
    /// weak_five.clone();
    /// ```
    #[inline]
    fn clone(&self) -> Weak<T> {
        // See comments in Arc::clone() for why this is relaxed.  This can use a
        // fetch_add (ignoring the lock) because the weak count is only locked
        // where are *no other* weak pointers in existence. (So we can't be
        // running this code in that case).
        let old_size = self.inner().weak.fetch_add(1, Relaxed);

        // See comments in Arc::clone() for why we do this (for mem::forget).
        if old_size > MAX_REFCOUNT {
            unsafe { abort(); }
        }

        return Weak { _ptr: self._ptr }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Drop for Weak<T> {
    /// Drops the `Weak<T>`.
    ///
    /// This will decrement the weak reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(arc_weak)]
    ///
    /// use std::sync::Arc;
    ///
    /// {
    ///     let five = Arc::new(5);
    ///     let weak_five = five.downgrade();
    ///
    ///     // stuff
    ///
    ///     drop(weak_five); // explicit drop
    /// }
    /// {
    ///     let five = Arc::new(5);
    ///     let weak_five = five.downgrade();
    ///
    ///     // stuff
    ///
    /// } // implicit drop
    /// ```
    fn drop(&mut self) {
        let ptr = *self._ptr;

        // see comments above for why this check is here
        if ptr as *mut u8 as usize == 0 || ptr as *mut u8 as usize == mem::POST_DROP_USIZE {
            return
        }

        // If we find out that we were the last weak pointer, then its time to
        // deallocate the data entirely. See the discussion in Arc::drop() about
        // the memory orderings
        //
        // It's not necessary to check for the locked state here, because the
        // weak count can only be locked if there was precisely one weak ref,
        // meaning that drop could only subsequently run ON that remaining weak
        // ref, which can only happen after the lock is released.
        if self.inner().weak.fetch_sub(1, Release) == 1 {
            atomic::fence(Acquire);
            unsafe { deallocate(ptr as *mut u8,
                                size_of_val(&*ptr),
                                align_of_val(&*ptr)) }
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
    /// Equality for two `Arc<T>`s.
    ///
    /// Two `Arc<T>`s are equal if their inner value are equal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five == Arc::new(5);
    /// ```
    fn eq(&self, other: &Arc<T>) -> bool { *(*self) == *(*other) }

    /// Inequality for two `Arc<T>`s.
    ///
    /// Two `Arc<T>`s are unequal if their inner value are unequal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five != Arc::new(5);
    /// ```
    fn ne(&self, other: &Arc<T>) -> bool { *(*self) != *(*other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
    /// Partial comparison for two `Arc<T>`s.
    ///
    /// The two are compared by calling `partial_cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five.partial_cmp(&Arc::new(5));
    /// ```
    fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    /// Less-than comparison for two `Arc<T>`s.
    ///
    /// The two are compared by calling `<` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five < Arc::new(5);
    /// ```
    fn lt(&self, other: &Arc<T>) -> bool { *(*self) < *(*other) }

    /// 'Less-than or equal to' comparison for two `Arc<T>`s.
    ///
    /// The two are compared by calling `<=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five <= Arc::new(5);
    /// ```
    fn le(&self, other: &Arc<T>) -> bool { *(*self) <= *(*other) }

    /// Greater-than comparison for two `Arc<T>`s.
    ///
    /// The two are compared by calling `>` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five > Arc::new(5);
    /// ```
    fn gt(&self, other: &Arc<T>) -> bool { *(*self) > *(*other) }

    /// 'Greater-than or equal to' comparison for two `Arc<T>`s.
    ///
    /// The two are compared by calling `>=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    ///
    /// let five = Arc::new(5);
    ///
    /// five >= Arc::new(5);
    /// ```
    fn ge(&self, other: &Arc<T>) -> bool { *(*self) >= *(*other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord> Ord for Arc<T> {
    fn cmp(&self, other: &Arc<T>) -> Ordering { (**self).cmp(&**other) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq> Eq for Arc<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> fmt::Pointer for Arc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&*self._ptr, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Arc<T> {
    #[stable(feature = "rust1", since = "1.0.0")]
    fn default() -> Arc<T> { Arc::new(Default::default()) }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash> Hash for Arc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state)
    }
}

#[cfg(test)]
mod tests {
    use std::clone::Clone;
    use std::sync::mpsc::channel;
    use std::mem::drop;
    use std::ops::Drop;
    use std::option::Option;
    use std::option::Option::{Some, None};
    use std::sync::atomic;
    use std::sync::atomic::Ordering::{Acquire, SeqCst};
    use std::thread;
    use std::vec::Vec;
    use super::{Arc, Weak};
    use std::sync::Mutex;

    struct Canary(*mut atomic::AtomicUsize);

    impl Drop for Canary
    {
        fn drop(&mut self) {
            unsafe {
                match *self {
                    Canary(c) => {
                        (*c).fetch_add(1, SeqCst);
                    }
                }
            }
        }
    }

    #[test]
    fn manually_share_arc() {
        let v = vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
        let arc_v = Arc::new(v);

        let (tx, rx) = channel();

        let _t = thread::spawn(move || {
            let arc_v: Arc<Vec<i32>> = rx.recv().unwrap();
            assert_eq!((*arc_v)[3], 4);
        });

        tx.send(arc_v.clone()).unwrap();

        assert_eq!((*arc_v)[2], 3);
        assert_eq!((*arc_v)[4], 5);
    }

    #[test]
    fn test_arc_get_mut() {
        let mut x = Arc::new(3);
        *Arc::get_mut(&mut x).unwrap() = 4;
        assert_eq!(*x, 4);
        let y = x.clone();
        assert!(Arc::get_mut(&mut x).is_none());
        drop(y);
        assert!(Arc::get_mut(&mut x).is_some());
        let _w = x.downgrade();
        assert!(Arc::get_mut(&mut x).is_none());
    }

    #[test]
    fn test_cowarc_clone_make_unique() {
        let mut cow0 = Arc::new(75);
        let mut cow1 = cow0.clone();
        let mut cow2 = cow1.clone();

        assert!(75 == *Arc::make_unique(&mut cow0));
        assert!(75 == *Arc::make_unique(&mut cow1));
        assert!(75 == *Arc::make_unique(&mut cow2));

        *Arc::make_unique(&mut cow0) += 1;
        *Arc::make_unique(&mut cow1) += 2;
        *Arc::make_unique(&mut cow2) += 3;

        assert!(76 == *cow0);
        assert!(77 == *cow1);
        assert!(78 == *cow2);

        // none should point to the same backing memory
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 != *cow2);
    }

    #[test]
    fn test_cowarc_clone_unique2() {
        let mut cow0 = Arc::new(75);
        let cow1 = cow0.clone();
        let cow2 = cow1.clone();

        assert!(75 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        *Arc::make_unique(&mut cow0) += 1;

        assert!(76 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        // cow1 and cow2 should share the same contents
        // cow0 should have a unique reference
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 == *cow2);
    }

    #[test]
    fn test_cowarc_clone_weak() {
        let mut cow0 = Arc::new(75);
        let cow1_weak = cow0.downgrade();

        assert!(75 == *cow0);
        assert!(75 == *cow1_weak.upgrade().unwrap());

        *Arc::make_unique(&mut cow0) += 1;

        assert!(76 == *cow0);
        assert!(cow1_weak.upgrade().is_none());
    }

    #[test]
    fn test_live() {
        let x = Arc::new(5);
        let y = x.downgrade();
        assert!(y.upgrade().is_some());
    }

    #[test]
    fn test_dead() {
        let x = Arc::new(5);
        let y = x.downgrade();
        drop(x);
        assert!(y.upgrade().is_none());
    }

    #[test]
    fn weak_self_cyclic() {
        struct Cycle {
            x: Mutex<Option<Weak<Cycle>>>
        }

        let a = Arc::new(Cycle { x: Mutex::new(None) });
        let b = a.clone().downgrade();
        *a.x.lock().unwrap() = Some(b);

        // hopefully we don't double-free (or leak)...
    }

    #[test]
    fn drop_arc() {
        let mut canary = atomic::AtomicUsize::new(0);
        let x = Arc::new(Canary(&mut canary as *mut atomic::AtomicUsize));
        drop(x);
        assert!(canary.load(Acquire) == 1);
    }

    #[test]
    fn drop_arc_weak() {
        let mut canary = atomic::AtomicUsize::new(0);
        let arc = Arc::new(Canary(&mut canary as *mut atomic::AtomicUsize));
        let arc_weak = arc.downgrade();
        assert!(canary.load(Acquire) == 0);
        drop(arc);
        assert!(canary.load(Acquire) == 1);
        drop(arc_weak);
    }

    #[test]
    fn test_strong_count() {
        let a = Arc::new(0u32);
        assert!(Arc::strong_count(&a) == 1);
        let w = a.downgrade();
        assert!(Arc::strong_count(&a) == 1);
        let b = w.upgrade().expect("");
        assert!(Arc::strong_count(&b) == 2);
        assert!(Arc::strong_count(&a) == 2);
        drop(w);
        drop(a);
        assert!(Arc::strong_count(&b) == 1);
        let c = b.clone();
        assert!(Arc::strong_count(&b) == 2);
        assert!(Arc::strong_count(&c) == 2);
    }

    #[test]
    fn test_weak_count() {
        let a = Arc::new(0u32);
        assert!(Arc::strong_count(&a) == 1);
        assert!(Arc::weak_count(&a) == 0);
        let w = a.downgrade();
        assert!(Arc::strong_count(&a) == 1);
        assert!(Arc::weak_count(&a) == 1);
        let x = w.clone();
        assert!(Arc::weak_count(&a) == 2);
        drop(w);
        drop(x);
        assert!(Arc::strong_count(&a) == 1);
        assert!(Arc::weak_count(&a) == 0);
        let c = a.clone();
        assert!(Arc::strong_count(&a) == 2);
        assert!(Arc::weak_count(&a) == 0);
        let d = c.downgrade();
        assert!(Arc::weak_count(&c) == 1);
        assert!(Arc::strong_count(&c) == 2);

        drop(a);
        drop(c);
        drop(d);
    }

    #[test]
    fn show_arc() {
        let a = Arc::new(5u32);
        assert_eq!(format!("{:?}", a), "5");
    }

    // Make sure deriving works with Arc<T>
    #[derive(Eq, Ord, PartialEq, PartialOrd, Clone, Debug, Default)]
    struct Foo { inner: Arc<i32> }

    #[test]
    fn test_unsized() {
        let x: Arc<[i32]> = Arc::new([1, 2, 3]);
        assert_eq!(format!("{:?}", x), "[1, 2, 3]");
        let y = x.clone().downgrade();
        drop(x);
        assert!(y.upgrade().is_none());
    }
}